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Abstract

A method has been developed for determining the transient response of a beam. The beam is divided into several

continuous Timoshenko beam elements. The overall dynamic stiffness matrix is assembled in turn. Using Leung’s

equation, we derive the overall mass and stiffness matrices which are more suitable for response analysis than the overall

dynamic stiffness matrix. The forced vibration of the beam is computed by the precise time integration method. Three

illustrative beams are discussed to evaluate the performance of the current method. Solutions calculated by the finite

element method and theoretical analysis are also enumerated for comparison. In these examples, we have found that the

current method can solve the forced vibration of structures with a higher precision.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic stiffness method can be considered as an improvement of the dynamic transfer matrix method
and finite element method (FEM). It includes the frequency-dependent shape function from the solution of the
governing differential equations. It also has the advantages of FEM, which is more suitable for complex
problems than the transfer matrix method. The dynamic stiffness method was developed in the 1940s
by Kolousĕk [1], who used the exact displacement method to derive the dynamic stiffness matrix of the
Bernoulli–Euler beam. Since then, many scholars have mentioned the continuous element and dynamic
stiffness matrix. Åkesson reviewed research before 1976 [2]. Recent progress and advances have been discussed
by Leung [3]. To solve the dynamic responses of the structures, the modal analysis method is commonly used
as the theoretical analysis method for many simple boundary conditions. Åkesson [2], Leung [3], Chen et al.
[4], Hong and Kim [5], and Liu et al. [6,7] used the modal analysis method and dynamic stiffness method for
forced transient response analysis of many kinds of structures.

In this paper, the dynamic stiffness matrix and precise time integration method are combined to analyze the
forced vibration of the beam. The method may be extended to solve the transient response of complex
structures in the future. The dynamic transfer matrices of bending deformation Timoshenko beam elements
are derived. Using the transform matrix, the overall dynamic stiffness matrix is assembled. We use Leung’s
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-section area
d displacement vector
E Young’s modulus of elasticity
F force vector
G shear modulus of elasticity
Iz moments of inertia with respect to z-axis
k shear shape factor
K overall stiffness matrix
K(x) overall dynamic stiffness matrix
l length of the beam
Mz bending moment with respect to z-axis
M total mass matrix
Qy shear force in y direction
t time

T coordinates transformation matrix
Txy dynamic transfer matrix of bending

vibration in x–y plane
y total deflection in y direction
x, y, z rectangular axes (origin at point O)
yz bending slope with respect to z-axis
m mass per unit area
n Poisson’s ratio
r mass per unit volume
o circular frequency

Subscript

0 state at x ¼ 0
l state at x ¼ l
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equation [8] to derive the overall mass and stiffness matrices, which are independent of frequencies. Then the
precise time integration method is used to derive the transient response of the systems. Finally, three kinds of
beam are used as numerical examples to verify the proposed method.

2. Transfer matrices of bending vibration of the Timoshenko beam

The governing motion equations of the Timoshenko beam are [9]:

Mz ¼ EIz

qyz

qx
, (1)

Qy ¼ �GAkg
qy

qx
� yz

� �
, (2)

EIz

q2yz

qx2
� GAk yz �

qy

qx

� �
� rIz

q2yz

qt2
¼ 0, (3)

GAk
qyz

qx
�

q2y

qx2

� �
þ m

q2y
qt2
¼ 0, (4)

where y is the total deflection in the y direction, yz the bending slope with respect to the z-axis, k the shear
shape factor of the beam, Iz the moment of inertia with respect to the z-axis, and m ¼ rA the mass per unit
area.
Mz0 Mzl �zl�z0

l
Qyl ylQy0 y0
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Fig. 1. End forces and displacements conditions of the Timoshenko beam element bending in x–y plane.
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Using the variables-separable form and the theory of differential equations, we may obtain the results for
y(x), yz(x), Qy(x), Mz(x). The end conditions for displacements and forces of the Timoshenko beam, whose
length is l, are shown in Fig. 1. So,

when x ¼ 0,

yð0Þ ¼ y0; yzð0Þ ¼ yz0 ;Qyð0Þ ¼ Qy0
;Mzð0Þ ¼ �Mz0 , (5)

when x ¼ l,

yðlÞ ¼ yl ; yzðlÞ ¼ yzl
;QyðlÞ ¼ �Qyl

;MzðlÞ ¼Mzl
. (6)

Using the boundary conditions mentioned above, we can obtain the relationship for the state vectors of
bending vibration of the Timoshenko beam in the x–y plane from the results of y(x), yz(x), Qy(x), Mz(x),

yl

yzl

Qyl

Mzl

8>>><
>>>:

9>>>=
>>>;
¼ Txy

y0

yz0

Qy0

Mz0

8>>><
>>>:

9>>>=
>>>;
, (7)

where

Txy ¼

D0 � sD2 lD4
l3ððb4 þ s2ÞD3 � sD1Þ

b4EIz

�
l2D2

EIz

b4D3

l
D0 � tD2

l2D2

EIz

�
l D4 þ sD3ð Þ

EIz

�
b4EIz D1 � sD3ð Þ

l3
�
b4EIzD2

l2
�D0 þ sD2

b4D3

l

b4EIzD2

l2
EIz

l
sC4 þD5ð Þ lD4 �D0 þ tD2

2
66666666666664

3
77777777777775
,

l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
sþ t
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ ðs� tÞ2=4

qr
; l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ t
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b4 þ ðs� tÞ2=4

qr
; l ¼

1

l21 þ l22
,

s ¼
mo2l2

GAk
; t ¼

mo2l2

EA
; b4 ¼

mo2l4

EIz

,

D0 ¼ lðcoshðl1Þl
2
2 þ cosðl2Þl

2
1Þ; D1 ¼ l sinhðl1Þ

l22
l1
þ sinðl2Þ

l21
l2

� �
; D2 ¼ lðcoshðl1Þ � cosðl2ÞÞ,

D3 ¼ l
sinhðl1Þ

l1
�

sinðl2Þ
l2

� �
; D4 ¼ lðsinhðl1Þl1 þ sinðl2Þl2Þ; D5 ¼ lðsinhðl1Þl

3
1 � sinðl2Þl

3
2Þ.

3. Dynamic stiffness matrix of the continuous Timoshenko beam element

Supposing the displacement vector d and force vector F of the Timoshenko beam element are:

d ¼ fy; yzg
T,

F ¼ fQy;Mzg
T. ð8Þ

Then the dynamic transfer matrix of this beam is

d

F

� �
l

¼
T11 T12

T21 T22

" #
d

F

� �
0

. (9)
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To obtain the dynamic stiffness matrix, transform equations are introduced [10]:

k11 ¼ �T
�1
12 T11,

k12 ¼ T�112 ,

k21 ¼ T21 � T22T
�1
12 T11,

k22 ¼ T22T
�1
12 . ð10Þ

The dynamic stiffness matrix is

F0

Fl

( )
¼

k11 k12

k21 k22

" #
d0

dl

( )
. (11)

Supposing the transform matrix from local coordinates to global coordinates is T. Using this transform
matrix, we may change the dynamic stiffness matrix from local coordinates to global coordinates. Then
the overall dynamic stiffness matrix K(x) is obtained by assembling dynamic stiffness matrices of all of the
individual elements in the usual FEM.

4. Analytical motion equation of forced vibration

Basing on the dynamic stiffness matrix, the forced vibration motion equation with damping is

KðxÞqþ C_q ¼ QðtÞ, (12)

where K(x) is the overall dynamic stiffness matrix, C the damping matrix, q the vector of generalized
displacement, and Q(t) the vector of generalized force.

In 1977, Richards and Leung gave the equations [8]

M ¼ �
qKðxÞ
qo2

; K ¼ KðxÞ þ o2M. (13)

Because the overall stiffness matrix K(x) is assembled, a numerical differentiation of Eq. (13) may be used in
practical computations [11]. We may obtain

M ¼ �
Kðo2Þ � Kðo1Þ

o2
2 � o2

1

; K ¼ KðxÞ þ o2M, (14)

where o1 ¼ o�e, o2 ¼ o+e, with e being a small number.
Using the overall mass and stiffness matrices at o, we can transform Eq. (12) into

M €xþ C _xþ Kx ¼ QðtÞ (15)

where M, C, and K are the overall stiffness, damping, and stiffness matrices, respectively.

5. Precise time integration method

The precise time integration method is a highly precise method. This method cannot only give precise
numerical results, but also has an explicit integral scheme and unconditional stability [12]. Assume that

p ¼M _xþ Cx=2. (16)

The second-order differentials in Eq. (15) can be transformed into the first-order form as

_v ¼ Hvþ f, (17)

where

v ¼ fq; pgT; H ¼
A D

B G

� �
; f ¼ f0;QðtÞTgT; q ¼ x,

A ¼ �M�1C=2; B ¼ CM�1C=4� K; G ¼ �CM�1=2; D ¼M�1.
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The traditional beam is a linear time-invariant system. Considering the dual Eq. (17), we may obtain its
general solution:

v ¼ eHtv0 þ

Z t

0

eHðt�xÞfðxÞdx. (18)

Suppose that the time step is t ¼ tk+1�tk, then Eq. (18) becomes

vkþ1 ¼ Tvk þ

Z tkþ1

tk

eHðtkþ1�xÞfðxÞdx, (19)

where T ¼ exp(Ht). When T is going to be computed, we should divide the time step t into Dt ¼ t/m ¼ t/2N.
When N ¼ 20, m ¼ 2N

¼ 1 048 576. Because t is a small time interval, Dt ¼ t/m is an extremely small time
interval [12].

Assume that Ta ¼ (HDt)(I+HDt)/2). Execute the cycle

for ði ¼ 0; ioN; i þþÞfTa ¼ 2Ta þ Ta � Tag. (20)

After the cycle, we may obtain T:

T ¼ Iþ Ta. (21)

Suppose that the inhomogeneous term is linear within the time step (tk, tk+1) [12], i.e.

fðtÞ ¼ r0 þ r1 � ðt� tkÞ. (22)

Substituting Eq. (22) into Eq. (19) gives the precise time integration equation:

vkþ1 ¼ T� ½vk þH�1ðr0 þH�1r1Þ� �H�1ðr0 þH�1r1 þ r1tÞ. (23)
6. Numerical examples

Numerical results are presented to demonstrate the current method. Three beam models are used as
numerical examples to test the current algorithm. In these examples, damping is neglected. The first example is
a simple supported beam forced by a step force. The second example is a simple supported beam forced by a
sinusoidal force. The third example is a stepped beam forced by a sinusoidal force. An IBM ThinkCentre A50
8176-KCB, which has one 2.80GHz Intel Pentium 4 processor and 248 megabytes of physical memory, is
used. The operating system is Microsoft Windows XP SP2.

6.1. Example 1: a simple supported beam forced by a step force

Fig. 2 shows a simple supported beam, with square cross-section. The basic member properties are length
l ¼ 10m, cross-section A ¼ 0.01m2, Young’s modulus E ¼ 2.058� 1011Nm�2, Poisson’s ratio n ¼ 0.3, shear
shape factor k ¼ 5/6, and density r ¼ 7.860� 103 kgm�3.

As the first example, there is a step external force F(t) of 300N at the middle of the beam. When the FEM is
used for the transient vibration analysis of the beam, there are at least six common beam elements to obtain
high precision. The Newmark time integration method is used, and the time step is 0.01 s. The theoretical
l/2

b

h

x

y

z

o o

l/2
F

y

Fig. 2. Sketch map of a simple supported beam.
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formulation of this problem is [13]

yðx; tÞ ¼
2Fl3

p4EIz

X1;3;5...
i¼

ð�1Þði�1Þ=2
1

i4
sin

ipx

l
ð1� cos oitÞ, (24)

where

oi ¼ i2p2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIz=rAl4

q
, (25)

x and o are the position and critical frequency of the external force, respectively.
Using the current method, we divide the beam into two continuous Timoshenko beam elements. The overall

mass and stiffness matrices are obtained at the basic frequencies o1. Using the precise time integration
method, we may also obtain the displacement at the mid point. For the solution, the time interval t ¼ 0.01 s.
Fig. 3 shows the vertical response at the mid point of the beam for the first 10 s. The comparisons show that
the results of the three methods are similar. The current method requires fewer elements than the FEM. The
performance of the current method compared to FEM is presented in Table 1. The analysis time with the
current method is about two times faster than FEM.

6.2. Example 2: a simple supported beam forced by a sinusoidal force

The second example is the simple supported beam forced by a sinusoidal external force F(t) ¼ F0 sin(30t)N
at the middle of the beam, where F0 ¼ 300N. The geometric and material properties of the beam are similar to
the first example. The FEM is similar to the first example. The theoretical formulation of this problem is [13]

yðx; tÞ ¼
X1
i¼1

2F 0

rAlðo2
i � o2Þ

sin
ipx

l
sin ot�

o
oi

sin oit

� �
, (26)

where oi refers to Eq. (25).
Using the current method, we may also obtain the displacement at the mid point. The basic parameters are

also the same as in the first example. The vertical response at the mid point of the beam for the first 10 s is
shown in Fig. 4. The comparisons show that the results of the current method are coincident with the
theoretical solutions, and better than the FEM results. So the current method may be suitable for solving the
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Fig. 3. Mid point vertical (y) response of a simple supported beam forced by a step force at mid point: solution of finite element

method, solution of current method, and theory solution.
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Table 1

Computation time for time analysis for example 1

Method Current method FEM

Computation time (s) 44.5 93.6
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Fig. 4. Mid point vertical (y) response of the second simple supported beam forced by a sinusoidal force at mid point: solution of

finite element method, solution of current method, and theory solution.

Table 2

Computation time for time analysis for example 2

Method Current method FEM

Computation time (s) 44.3 93.8
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forced vibration of complex structures. Table 2 shows the analysis time with the current method and FEM,
respectively. The current method is two times faster than FEM.

6.3. Example 3: a cantilever stepped beam forced by a sinusoidal force

The third example is a cantilever stepped beam forced by a sinusoidal external force F(t) ¼ F0 sin(30t)N at
the free end of the beam, where F0 ¼ 1000N. The beam is shown in Fig. 5. The material properties of the
stepped beam are similar to the first example. Each segment has a square cross-section. li and Ai are the length
and area of the ith segment ði ¼ 1; 2; 3Þ, where l1 ¼ l2 ¼ 3m, l3 ¼ 4m, A1 ¼ 0.7744m2, A2 ¼ 0.4096m2, and
A3 ¼ 0.1296m2. The FEM is similar to the first example. The stepped beam is divided into 50 beam elements.
The Newmark time integration method is used, and the time step is 0.01 s. The total calculation time is 10 s.

Using the current method, we divide the stepped beam into three continuous Timoshenko beam elements.
The vertical response at the free end of the beam for the first 6 s of the total calculation time (10 s) is shown in
Fig. 6, which shows the results of the current method and the FEM. To illustrate the difference of the results in
Fig. 6, we use FFT method to analyze the time domain responses. The responses in the frequency domain are
shown in Fig. 7. The first amplitude is the forced vibration response. The second and third amplitudes are the
free vibration response calculated by the current method and FEM, respectively, which are at 10.83984 and
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Fig. 6. Free end vertical (y) response in the time domain of the stepped beam forced by a sinusoidal force at free end: solution of

finite element method, and solution of current method.
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Fig. 5. Sketch map of a cantilever stepped beam.
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Fig. 7. Free end vertical (y) response in the frequency domain of the stepped beam forced by a sinusoidal force at free end: solution of

finite element method, and solution of current method.
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Table 3

Computation time for time analysis for example 3

Method Current method FEM

Computation time (s) 55.0 94.6

B. Tang / Journal of Sound and Vibration 309 (2008) 868–876876
11.23047Hz. The free vibration frequency calculated by the current method is more accurate than the FEM.
Table 3 shows the computation time for each method. The current method is still faster than the FEM.

7. Conclusion

In this paper, based on the dynamic stiffness matrix and precise time integration method, the dynamic
responses of a beam are analyzed. This method combines the advantages of the dynamic stiffness matrix and
the precise time integration method. A simple supported beam with two boundary conditions and a stepped
beam with one boundary condition are used as examples. The calculations and comparisons prove that this
method can be used effectively for forced vibration analysis of beams.
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